ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.14746
16
0

Improvising the Learning of Neural Networks on Hyperspherical Manifold

29 September 2021
Lalith Bharadwaj Baru
Sai Vardhan Kanumolu
Shilhora Akshay Patel
Madhu G
ArXivPDFHTML
Abstract

The impact of convolution neural networks (CNNs) in the supervised settings provided tremendous increment in performance. The representations learned from CNN's operated on hyperspherical manifold led to insightful outcomes in face recognition, face identification, and other supervised tasks. A broad range of activation functions were developed with hypersphere intuition which performs superior to softmax in euclidean space. The main motive of this research is to provide insights. First, the stereographic projection is implied to transform data from Euclidean space (Rn\mathbb{R}^{n}Rn) to hyperspherical manifold (Sn\mathbb{S}^{n}Sn) to analyze the performance of angular margin losses. Secondly, proving theoretically and practically that decision boundaries constructed on hypersphere using stereographic projection obliges the learning of neural networks. Experiments have demonstrated that applying stereographic projection on existing state-of-the-art angular margin objective functions improved performance for standard image classification data sets (CIFAR-10,100). Further, we ran our experiments on malaria-thin blood smear images, resulting in effective outcomes. The code is publicly available at:https://github.com/barulalithb/stereo-angular-margin.

View on arXiv
Comments on this paper