Despite the success of a number of recent techniques for visual self-supervised deep learning, there has been limited investigation into the representations that are ultimately learned. By leveraging recent advances in the comparison of neural representations, we explore in this direction by comparing a contrastive self-supervised algorithm to supervision for simple image data in a common architecture. We find that the methods learn similar intermediate representations through dissimilar means, and that the representations diverge rapidly in the final few layers. We investigate this divergence, finding that these layers strongly fit to their distinct learning objectives. We also find that the contrastive objective implicitly fits the supervised objective in intermediate layers, but that the reverse is not true. Our work particularly highlights the importance of the learned intermediate representations, and raises critical questions for auxiliary task design.
View on arXiv