ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.01387
19
116

Machine Learning with Knowledge Constraints for Process Optimization of Open-Air Perovskite Solar Cell Manufacturing

1 October 2021
Zhe Liu
Nicholas Rolston
Austin C. Flick
T. Colburn
Zekun Ren
R. Dauskardt
Tonio Buonassisi
ArXivPDFHTML
Abstract

Perovskite photovoltaics (PV) have achieved rapid development in the past decade in terms of power conversion efficiency of small-area lab-scale devices; however, successful commercialization still requires further development of low-cost, scalable, and high-throughput manufacturing techniques. One of the critical challenges of developing a new fabrication technique is the high-dimensional parameter space for optimization, but machine learning (ML) can readily be used to accelerate perovskite PV scaling. Herein, we present an ML-guided framework of sequential learning for manufacturing process optimization. We apply our methodology to the Rapid Spray Plasma Processing (RSPP) technique for perovskite thin films in ambient conditions. With a limited experimental budget of screening 100 process conditions, we demonstrated an efficiency improvement to 18.5% as the best-in-our-lab device fabricated by RSPP, and we also experimentally found 10 unique process conditions to produce the top-performing devices of more than 17% efficiency, which is 5 times higher rate of success than the control experiments with pseudo-random Latin hypercube sampling. Our model is enabled by three innovations: (a) flexible knowledge transfer between experimental processes by incorporating data from prior experimental data as a probabilistic constraint; (b) incorporation of both subjective human observations and ML insights when selecting next experiments; (c) adaptive strategy of locating the region of interest using Bayesian optimization first, and then conducting local exploration for high-efficiency devices. Furthermore, in virtual benchmarking, our framework achieves faster improvements with limited experimental budgets than traditional design-of-experiments methods (e.g., one-variable-at-a-time sampling).

View on arXiv
Comments on this paper