ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.02059
16
10

Multi-Relational Graph based Heterogeneous Multi-Task Learning in Community Question Answering

4 September 2021
Zizheng Lin
Hao Ke
N. Wong
Jiaxin Bai
Yangqiu Song
Huan Zhao
Junpeng Ye
ArXivPDFHTML
Abstract

Various data mining tasks have been proposed to study Community Question Answering (CQA) platforms like Stack Overflow. The relatedness between some of these tasks provides useful learning signals to each other via Multi-Task Learning (MTL). However, due to the high heterogeneity of these tasks, few existing works manage to jointly solve them in a unified framework. To tackle this challenge, we develop a multi-relational graph based MTL model called Heterogeneous Multi-Task Graph Isomorphism Network (HMTGIN) which efficiently solves heterogeneous CQA tasks. In each training forward pass, HMTGIN embeds the input CQA forum graph by an extension of Graph Isomorphism Network and skip connections. The embeddings are then shared across all task-specific output layers to compute respective losses. Moreover, two cross-task constraints based on the domain knowledge about tasks' relationships are used to regularize the joint learning. In the evaluation, the embeddings are shared among different task-specific output layers to make corresponding predictions. To the best of our knowledge, HMTGIN is the first MTL model capable of tackling CQA tasks from the aspect of multi-relational graphs. To evaluate HMTGIN's effectiveness, we build a novel large-scale multi-relational graph CQA dataset with over two million nodes from Stack Overflow. Extensive experiments show that: (1)(1)(1) HMTGIN is superior to all baselines on five tasks; (2)(2)(2) The proposed MTL strategy and cross-task constraints have substantial advantages.

View on arXiv
Comments on this paper