ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.02125
11
0

Adversarial Robustness Verification and Attack Synthesis in Stochastic Systems

5 October 2021
Lisa Oakley
Alina Oprea
S. Tripakis
    AAML
ArXivPDFHTML
Abstract

Probabilistic model checking is a useful technique for specifying and verifying properties of stochastic systems including randomized protocols and reinforcement learning models. Existing methods rely on the assumed structure and probabilities of certain system transitions. These assumptions may be incorrect, and may even be violated by an adversary who gains control of system components. In this paper, we develop a formal framework for adversarial robustness in systems modeled as discrete time Markov chains (DTMCs). We base our framework on existing methods for verifying probabilistic temporal logic properties and extend it to include deterministic, memoryless policies acting in Markov decision processes (MDPs). Our framework includes a flexible approach for specifying structure-preserving and non structure-preserving adversarial models. We outline a class of threat models under which adversaries can perturb system transitions, constrained by an ε\varepsilonε ball around the original transition probabilities. We define three main DTMC adversarial robustness problems: adversarial robustness verification, maximal δ\deltaδ synthesis, and worst case attack synthesis. We present two optimization-based solutions to these three problems, leveraging traditional and parametric probabilistic model checking techniques. We then evaluate our solutions on two stochastic protocols and a collection of Grid World case studies, which model an agent acting in an environment described as an MDP. We find that the parametric solution results in fast computation for small parameter spaces. In the case of less restrictive (stronger) adversaries, the number of parameters increases, and directly computing property satisfaction probabilities is more scalable. We demonstrate the usefulness of our definitions and solutions by comparing system outcomes over various properties, threat models, and case studies.

View on arXiv
Comments on this paper