ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.02271
29
5

Networked Time Series Prediction with Incomplete Data via Generative Adversarial Network

5 October 2021
Yichen Zhu
Bo Jiang
Haiming Jin
Mengtian Zhang
Feng Gao
Jianqiang Huang
Tao Lin
Xinbing Wang
    GNN
    AI4TS
ArXivPDFHTML
Abstract

A networked time series (NETS) is a family of time series on a given graph, one for each node. It has a wide range of applications from intelligent transportation, environment monitoring to smart grid management. An important task in such applications is to predict the future values of a NETS based on its historical values and the underlying graph. Most existing methods require complete data for training. However, in real-world scenarios, it is not uncommon to have missing data due to sensor malfunction, incomplete sensing coverage, etc. In this paper, we study the problem of NETS prediction with incomplete data. We propose NETS-ImpGAN, a novel deep learning framework that can be trained on incomplete data with missing values in both history and future. Furthermore, we propose Graph Temporal Attention Networks, which incorporate the attention mechanism to capture both inter-time series and temporal correlations. We conduct extensive experiments on four real-world datasets under different missing patterns and missing rates. The experimental results show that NETS-ImpGAN outperforms existing methods, reducing the MAE by up to 25%.

View on arXiv
Comments on this paper