ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.02421
13
2

Explaining Off-Policy Actor-Critic From A Bias-Variance Perspective

6 October 2021
Ting-Han Fan
Peter J. Ramadge
    CML
    FAtt
    OffRL
ArXivPDFHTML
Abstract

Off-policy Actor-Critic algorithms have demonstrated phenomenal experimental performance but still require better explanations. To this end, we show its policy evaluation error on the distribution of transitions decomposes into: a Bellman error, a bias from policy mismatch, and a variance term from sampling. By comparing the magnitude of bias and variance, we explain the success of the Emphasizing Recent Experience sampling and 1/age weighted sampling. Both sampling strategies yield smaller bias and variance and are hence preferable to uniform sampling.

View on arXiv
Comments on this paper