ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.02491
33
16

Data-Centric AI Requires Rethinking Data Notion

6 October 2021
Mustafa Hajij
Ghada Zamzmi
K. Ramamurthy
Aldo Guzmán-Sáenz
ArXivPDFHTML
Abstract

The transition towards data-centric AI requires revisiting data notions from mathematical and implementational standpoints to obtain unified data-centric machine learning packages. Towards this end, this work proposes unifying principles offered by categorical and cochain notions of data, and discusses the importance of these principles in data-centric AI transition. In the categorical notion, data is viewed as a mathematical structure that we act upon via morphisms to preserve this structure. As for cochain notion, data can be viewed as a function defined in a discrete domain of interest and acted upon via operators. While these notions are almost orthogonal, they provide a unifying definition to view data, ultimately impacting the way machine learning packages are developed, implemented, and utilized by practitioners.

View on arXiv
Comments on this paper