ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.02686
13
10

Long-tailed Distribution Adaptation

6 October 2021
Zhiliang Peng
Wei Huang
Zonghao Guo
Xiaosong Zhang
Jianbin Jiao
QiXiang Ye
ArXivPDFHTML
Abstract

Recognizing images with long-tailed distributions remains a challenging problem while there lacks an interpretable mechanism to solve this problem. In this study, we formulate Long-tailed recognition as Domain Adaption (LDA), by modeling the long-tailed distribution as an unbalanced domain and the general distribution as a balanced domain. Within the balanced domain, we propose to slack the generalization error bound, which is defined upon the empirical risks of unbalanced and balanced domains and the divergence between them. We propose to jointly optimize empirical risks of the unbalanced and balanced domains and approximate their domain divergence by intra-class and inter-class distances, with the aim to adapt models trained on the long-tailed distribution to general distributions in an interpretable way. Experiments on benchmark datasets for image recognition, object detection, and instance segmentation validate that our LDA approach, beyond its interpretability, achieves state-of-the-art performance. Code is available at https://github.com/pengzhiliang/LDA.

View on arXiv
Comments on this paper