Parameters of the covariance kernel of a Gaussian process model often need to be estimated from the data generated by an unknown Gaussian process. We consider fixed-domain asymptotics of the maximum likelihood estimator of the scale parameter under smoothness misspecification. If the covariance kernel of the data-generating process has smoothness but that of the model has smoothness , we prove that the expectation of the maximum likelihood estimator is of the order if the observation points are quasi-uniform in . This indicates that maximum likelihood estimation of the scale parameter alone is sufficient to guarantee the correct rate of decay of the conditional variance. We also discuss a connection the expected maximum likelihood estimator has to Driscoll's theorem on sample path properties of Gaussian processes. The proofs are based on reproducing kernel Hilbert space techniques and worst-case case rates for approximation in Sobolev spaces.
View on arXiv