ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.02879
14
0

Compositional Q-learning for electrolyte repletion with imbalanced patient sub-populations

6 October 2021
Aishwarya Mandyam
Andrew Jones
Jiayu Yao
K. Laudanski
Barbara E. Engelhardt
    OffRL
ArXivPDFHTML
Abstract

Reinforcement learning (RL) is an effective framework for solving sequential decision-making tasks. However, applying RL methods in medical care settings is challenging in part due to heterogeneity in treatment response among patients. Some patients can be treated with standard protocols whereas others, such as those with chronic diseases, need personalized treatment planning. Traditional RL methods often fail to account for this heterogeneity, because they assume that all patients respond to the treatment in the same way (i.e., transition dynamics are shared). We introduce Compositional Fitted QQQ-iteration (CFQI), which uses a compositional task structure to represent heterogeneous treatment responses in medical care settings. A compositional task consists of several variations of the same task, each progressing in difficulty; solving simpler variants of the task can enable efficient solving of harder variants. CFQI uses a compositional QQQ-value function with separate modules for each task variant, allowing it to take advantage of shared knowledge while learning distinct policies for each variant. We validate CFQI's performance using a Cartpole environment and use CFQI to recommend electrolyte repletion for patients with and without renal disease. Our results demonstrate that CFQI is robust even in the presence of class imbalance, enabling effective information usage across patient sub-populations. CFQI exhibits great promise for clinical applications in scenarios characterized by known compositional structures.

View on arXiv
Comments on this paper