ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.03061
8
18

FedTune: Automatic Tuning of Federated Learning Hyper-Parameters from System Perspective

6 October 2021
Huan Zhang
Mi Zhang
Xin Liu
P. Mohapatra
Michael DeLucia
    FedML
ArXivPDFHTML
Abstract

Federated learning (FL) hyper-parameters significantly affect the training overheads in terms of computation time, transmission time, computation load, and transmission load. However, the current practice of manually selecting FL hyper-parameters puts a high burden on FL practitioners since various applications prefer different training preferences. In this paper, we propose FedTune, an automatic FL hyper-parameter tuning algorithm tailored to applications' diverse system requirements of FL training. FedTune is lightweight and flexible, achieving 8.48%-26.75% improvement for different datasets compared to fixed FL hyper-parameters.

View on arXiv
Comments on this paper