ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.03146
13
5

Solving Multistage Stochastic Linear Programming via Regularized Linear Decision Rules: An Application to Hydrothermal Dispatch Planning

7 October 2021
Felipe Nazaré
A. Street
ArXivPDFHTML
Abstract

The solution of multistage stochastic linear problems (MSLP) represents a challenge for many application areas. Long-term hydrothermal dispatch planning (LHDP) materializes this challenge in a real-world problem that affects electricity markets, economies, and natural resources worldwide. No closed-form solutions are available for MSLP and the definition of non-anticipative policies with high-quality out-of-sample performance is crucial. Linear decision rules (LDR) provide an interesting simulation-based framework for finding high-quality policies for MSLP through two-stage stochastic models. In practical applications, however, the number of parameters to be estimated when using an LDR may be close to or higher than the number of scenarios of the sample average approximation problem, thereby generating an in-sample overfit and poor performances in out-of-sample simulations. In this paper, we propose a novel regularized LDR to solve MSLP based on the AdaLASSO (adaptive least absolute shrinkage and selection operator). The goal is to use the parsimony principle, as largely studied in high-dimensional linear regression models, to obtain better out-of-sample performance for LDR applied to MSLP. Computational experiments show that the overfit threat is non-negligible when using classical non-regularized LDR to solve the LHDP, one of the most studied MSLP with relevant applications. Our analysis highlights the following benefits of the proposed framework in comparison to the non-regularized benchmark: 1) significant reductions in the number of non-zero coefficients (model parsimony), 2) substantial cost reductions in out-of-sample evaluations, and 3) improved spot-price profiles.

View on arXiv
Comments on this paper