ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.03251
14
7

A Cough-based deep learning framework for detecting COVID-19

7 October 2021
Hoang Van Truong
L. D. Pham
Dat Ngo
Hoang-Dung Nguyen
ArXivPDFHTML
Abstract

This paper presents a deep learning framework for detecting COVID-19 positive subjects from their cough sounds. In particular, the proposed approach comprises two main steps. In the first step, we generate a feature representing the cough sound by combining an embedding extracted from a pre-trained model and handcrafted features extracted from draw audio recording, referred to as the front-end feature extraction. Then, the combined features are fed into different back-end classification models for detecting COVID-19 positive subjects in the second step. Our experiments on the Track-2 dataset of the Second 2021 DiCOVA Challenge achieved the second top ranking with an AUC score of 81.21 and the top F1 score of 53.21 on a Blind Test set, improving the challenge baseline by 8.43% and 23.4% respectively and showing deployability, robustness and competitiveness with the state-of-the-art systems.

View on arXiv
Comments on this paper