ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.04265
14
2

A study of the robustness of raw waveform based speaker embeddings under mismatched conditions

8 October 2021
Ge Zhu
Frank Cwitkowitz
Z. Duan
ArXivPDFHTML
Abstract

In this paper, we conduct a cross-dataset study on parametric and non-parametric raw-waveform based speaker embeddings through speaker verification experiments. In general, we observe a more significant performance degradation of these raw-waveform systems compared to spectral based systems. We then propose two strategies to improve the performance of raw-waveform based systems on cross-dataset tests. The first strategy is to change the real-valued filters into analytic filters to ensure shift-invariance. The second strategy is to apply variational dropout to non-parametric filters to prevent them from overfitting irrelevant nuance features.

View on arXiv
Comments on this paper