ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.04447
20
79

EfficientPhys: Enabling Simple, Fast and Accurate Camera-Based Vitals Measurement

9 October 2021
Xin Liu
B. Hill
Ziheng Jiang
Shwetak N. Patel
Daniel J. McDuff
    3DH
    MedIm
ArXivPDFHTML
Abstract

Camera-based physiological measurement is a growing field with neural models providing state-the-art-performance. Prior research have explored various "end-to-end" models; however these methods still require several preprocessing steps. These additional operations are often non-trivial to implement making replication and deployment difficult and can even have a higher computational budget than the "core" network itself. In this paper, we propose two novel and efficient neural models for camera-based physiological measurement called EfficientPhys that remove the need for face detection, segmentation, normalization, color space transformation or any other preprocessing steps. Using an input of raw video frames, our models achieve strong performance on three public datasets. We show that this is the case whether using a transformer or convolutional backbone. We further evaluate the latency of the proposed networks and show that our most light weight network also achieves a 33% improvement in efficiency.

View on arXiv
Comments on this paper