ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.04597
37
26

A Proximal Algorithm for Sampling from Non-smooth Potentials

9 October 2021
Jiaming Liang
Yongxin Chen
ArXivPDFHTML
Abstract

In this work, we examine sampling problems with non-smooth potentials. We propose a novel Markov chain Monte Carlo algorithm for sampling from non-smooth potentials. We provide a non-asymptotical analysis of our algorithm and establish a polynomial-time complexity O~(dε−1)\tilde {\cal O}(d\varepsilon^{-1})O~(dε−1) to obtain ε\varepsilonε total variation distance to the target density, better than most existing results under the same assumptions. Our method is based on the proximal bundle method and an alternating sampling framework. This framework requires the so-called restricted Gaussian oracle, which can be viewed as a sampling counterpart of the proximal mapping in convex optimization. One key contribution of this work is a fast algorithm that realizes the restricted Gaussian oracle for any convex non-smooth potential with bounded Lipschitz constant.

View on arXiv
Comments on this paper