ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.05018
66
5
v1v2 (latest)

Time-varying Graph Learning Under Structured Temporal Priors

11 October 2021
Xiang Zhang
Qiao Wang
    CML
ArXiv (abs)PDFHTML
Abstract

This paper endeavors to learn time-varying graphs by using structured temporal priors that assume underlying relations between arbitrary two graphs in the graph sequence. Different from many existing chain structure based methods in which the priors like temporal homogeneity can only describe the variations of two consecutive graphs, we propose a structure named \emph{temporal graph} to characterize the underlying real temporal relations. Under this framework, the chain structure is actually a special case of our temporal graph. We further proposed Alternating Direction Method of Multipliers (ADMM), a distributed algorithm, to solve the induced optimization problem. Numerical experiments demonstrate the superiorities of our method.

View on arXiv
Comments on this paper