ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.05074
17
11

Rethinking Person Re-Identification via Semantic-Based Pretraining

11 October 2021
Suncheng Xiang
Jingsheng Gao
Zi-Yu Zhang
Mengyuan Guan
Binghai Yan
Ting Liu
Dahong Qian
Yuzhuo Fu
    VLM
ArXivPDFHTML
Abstract

Pretraining is a dominant paradigm in computer vision. Generally, supervised ImageNet pretraining is commonly used to initialize the backbones of person re-identification (Re-ID) models. However, recent works show a surprising result that CNN-based pretraining on ImageNet has limited impacts on Re-ID system due to the large domain gap between ImageNet and person Re-ID data. To seek an alternative to traditional pretraining, here we investigate semantic-based pretraining as another method to utilize additional textual data against ImageNet pretraining. Specifically, we manually construct a diversified FineGPR-C caption dataset for the first time on person Re-ID events. Based on it, a pure semantic-based pretraining approach named VTBR is proposed to adopt dense captions to learn visual representations with fewer images. We train convolutional neural networks from scratch on the captions of FineGPR-C dataset, and then transfer them to downstream Re-ID tasks. Comprehensive experiments conducted on benchmark datasets show that our VTBR can achieve competitive performance compared with ImageNet pretraining - despite using up to 1.4x fewer images, revealing its potential in Re-ID pretraining.

View on arXiv
Comments on this paper