ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.05803
40
59

SDWNet: A Straight Dilated Network with Wavelet Transformation for Image Deblurring

12 October 2021
Wenbin Zou
Mingchao Jiang
Yunchen Zhang
Liang Chen
Zhiyong Lu
Yi Wu
ArXivPDFHTML
Abstract

Image deblurring is a classical computer vision problem that aims to recover a sharp image from a blurred image. To solve this problem, existing methods apply the Encode-Decode architecture to design the complex networks to make a good performance. However, most of these methods use repeated up-sampling and down-sampling structures to expand the receptive field, which results in texture information loss during the sampling process and some of them design the multiple stages that lead to difficulties with convergence. Therefore, our model uses dilated convolution to enable the obtainment of the large receptive field with high spatial resolution. Through making full use of the different receptive fields, our method can achieve better performance. On this basis, we reduce the number of up-sampling and down-sampling and design a simple network structure. Besides, we propose a novel module using the wavelet transform, which effectively helps the network to recover clear high-frequency texture details. Qualitative and quantitative evaluations of real and synthetic datasets show that our deblurring method is comparable to existing algorithms in terms of performance with much lower training requirements. The source code and pre-trained models are available at https://github.com/FlyEgle/SDWNet.

View on arXiv
Comments on this paper