ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.06400
195
22
v1v2v3 (latest)

CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation

12 October 2021
Nicolae-Cătălin Ristea
A. Miron
O. Savencu
Mariana-Iuliana Georgescu
N. Verga
Fahad Shahbaz Khan
Radu Tudor Ionescu
    ViTMedIm
ArXiv (abs)PDFHTMLGithub (32★)
Abstract

We propose a novel approach to translate unpaired contrast computed tomography (CT) scans to non-contrast CT scans and the other way around. Solving this task has two important applications: (i) to automatically generate contrast CT scans for patients for whom injecting contrast substance is not an option, and (ii) to enhance alignment between contrast and non-contrast CT by reducing the differences induced by the contrast substance before registration. Our approach is based on cycle-consistent generative adversarial convolutional transformers, for short, CyTran. Our neural model can be trained on unpaired images, due to the integration of a cycle-consistency loss. To deal with high-resolution images, we design a hybrid architecture based on convolutional and multi-head attention layers. In addition, we introduce a novel data set, Coltea-Lung-CT-100W, containing 3D triphasic lung CT scans (with a total of 37,290 images) collected from 100 female patients. Each scan contains three phases (non-contrast, early portal venous, and late arterial), allowing us to perform experiments to compare our novel approach with state-of-the-art methods for image style transfer. Our empirical results show that CyTran outperforms all competing methods. Moreover, we show that CyTran can be employed as a preliminary step to improve a state-of-the-art medical image alignment method. We release our novel model and data set as open source at: https://github.com/ristea/cycle-transformer.

View on arXiv
Comments on this paper