ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.06533
26
46

EventBERT: A Pre-Trained Model for Event Correlation Reasoning

13 October 2021
Yucheng Zhou
Xiubo Geng
Tao Shen
Guodong Long
Daxin Jiang
ArXivPDFHTML
Abstract

Event correlation reasoning infers whether a natural language paragraph containing multiple events conforms to human common sense. For example, "Andrew was very drowsy, so he took a long nap, and now he is very alert" is sound and reasonable. In contrast, "Andrew was very drowsy, so he stayed up a long time, now he is very alert" does not comply with human common sense. Such reasoning capability is essential for many downstream tasks, such as script reasoning, abductive reasoning, narrative incoherence, story cloze test, etc. However, conducting event correlation reasoning is challenging due to a lack of large amounts of diverse event-based knowledge and difficulty in capturing correlation among multiple events. In this paper, we propose EventBERT, a pre-trained model to encapsulate eventuality knowledge from unlabeled text. Specifically, we collect a large volume of training examples by identifying natural language paragraphs that describe multiple correlated events and further extracting event spans in an unsupervised manner. We then propose three novel event- and correlation-based learning objectives to pre-train an event correlation model on our created training corpus. Empirical results show EventBERT outperforms strong baselines on four downstream tasks, and achieves SoTA results on most of them. Besides, it outperforms existing pre-trained models by a large margin, e.g., 6.5~23%, in zero-shot learning of these tasks.

View on arXiv
Comments on this paper