ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.06640
14
1

Detecting Slag Formations with Deep Convolutional Neural Networks

13 October 2021
Christian von Koch
William Anzén
Max Fischer
R. Sainudiin
ArXivPDFHTML
Abstract

We investigate the ability to detect slag formations in images from inside a Grate-Kiln system furnace with two deep convolutional neural networks. The conditions inside the furnace cause occasional obstructions of the camera view. Our approach suggests dealing with this problem by introducing a convLSTM-layer in the deep convolutional neural network. The results show that it is possible to achieve sufficient performance to automate the decision of timely countermeasures in the industrial operational setting. Furthermore, the addition of the convLSTM-layer results in fewer outlying predictions and a lower running variance of the fraction of detected slag in the image time series.

View on arXiv
Comments on this paper