ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.06978
8
16

WAFFLE: Weighted Averaging for Personalized Federated Learning

13 October 2021
Martin Beaussart
Felix Grimberg
Mary-Anne Hartley
Martin Jaggi
    FedML
ArXivPDFHTML
Abstract

In federated learning, model personalization can be a very effective strategy to deal with heterogeneous training data across clients. We introduce WAFFLE (Weighted Averaging For Federated LEarning), a personalized collaborative machine learning algorithm that leverages stochastic control variates for faster convergence. WAFFLE uses the Euclidean distance between clients' updates to weigh their individual contributions and thus minimize the personalized model loss on the specific agent of interest. Through a series of experiments, we compare our new approach to two recent personalized federated learning methods--Weight Erosion and APFL--as well as two general FL methods--Federated Averaging and SCAFFOLD. Performance is evaluated using two categories of non-identical client data distributions--concept shift and label skew--on two image data sets (MNIST and CIFAR10). Our experiments demonstrate the comparative effectiveness of WAFFLE, as it achieves or improves accuracy with faster convergence.

View on arXiv
Comments on this paper