ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.09197
36
0
v1v2v3 (latest)

On the Completeness and Complexity of the Lifted Dynamic Junction Tree Algorithm

18 October 2021
Marcel Gehrke
ArXiv (abs)PDFHTML
Abstract

Lifted inference allows to perform inference in polynomial time w.r.t. domain sizes. For a lifted algorithm, completeness investigates model classes for which the algorithm is guaranteed to compute a lifted solution. We contribute, to the best of our knowledge, the first completeness and complexity analysis for a temporal lifted algorithm, the so-called lifted dynamic junction tree algorithm (LDJT). To treat time as a first class citizen, LDJT introduces some constraints. Given these constraints, we analyse the classes of liftable models. Further, we show that LDJT has many advantages from a complexity point of view compared to a propositional temporal inference algorithm w.r.t. domain sizes. Therefore, LDJT advances the number of models for which inference tasks can be solved in reasonable time not only from a practically point of view, but also from a theoretical point of view.

View on arXiv
Comments on this paper