ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.09232
22
12

Accountability in AI: From Principles to Industry-specific Accreditation

8 October 2021
Christian Percy
S. Dragicevic
Sanjoy Sarkar
Artur Garcez
ArXivPDFHTML
Abstract

Recent AI-related scandals have shed a spotlight on accountability in AI, with increasing public interest and concern. This paper draws on literature from public policy and governance to make two contributions. First, we propose an AI accountability ecosystem as a useful lens on the system, with different stakeholders requiring and contributing to specific accountability mechanisms. We argue that the present ecosystem is unbalanced, with a need for improved transparency via AI explainability and adequate documentation and process formalisation to support internal audit, leading up eventually to external accreditation processes. Second, we use a case study in the gambling sector to illustrate in a subset of the overall ecosystem the need for industry-specific accountability principles and processes. We define and evaluate critically the implementation of key accountability principles in the gambling industry, namely addressing algorithmic bias and model explainability, before concluding and discussing directions for future work based on our findings. Keywords: Accountability, Explainable AI, Algorithmic Bias, Regulation.

View on arXiv
Comments on this paper