ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.09305
14
3

Vit-GAN: Image-to-image Translation with Vision Transformes and Conditional GANS

11 October 2021
Yigit Gündüç
    ViT
ArXivPDFHTML
Abstract

In this paper, we have developed a general-purpose architecture, Vit-Gan, capable of performing most of the image-to-image translation tasks from semantic image segmentation to single image depth perception. This paper is a follow-up paper, an extension of generator-based model [1] in which the obtained results were very promising. This opened the possibility of further improvements with adversarial architecture. We used a unique vision transformers-based generator architecture and Conditional GANs(cGANs) with a Markovian Discriminator (PatchGAN) (https://github.com/YigitGunduc/vit-gan). In the present work, we use images as conditioning arguments. It is observed that the obtained results are more realistic than the commonly used architectures.

View on arXiv
Comments on this paper