ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.09507
8
5

Provable Hierarchy-Based Meta-Reinforcement Learning

18 October 2021
Kurtland Chua
Qi Lei
Jason D. Lee
ArXivPDFHTML
Abstract

Hierarchical reinforcement learning (HRL) has seen widespread interest as an approach to tractable learning of complex modular behaviors. However, existing work either assume access to expert-constructed hierarchies, or use hierarchy-learning heuristics with no provable guarantees. To address this gap, we analyze HRL in the meta-RL setting, where a learner learns latent hierarchical structure during meta-training for use in a downstream task. We consider a tabular setting where natural hierarchical structure is embedded in the transition dynamics. Analogous to supervised meta-learning theory, we provide "diversity conditions" which, together with a tractable optimism-based algorithm, guarantee sample-efficient recovery of this natural hierarchy. Furthermore, we provide regret bounds on a learner using the recovered hierarchy to solve a meta-test task. Our bounds incorporate common notions in HRL literature such as temporal and state/action abstractions, suggesting that our setting and analysis capture important features of HRL in practice.

View on arXiv
Comments on this paper