ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.11091
25
2
v1v2v3v4 (latest)

E-DPNCT: An Enhanced Attack Resilient Differential Privacy Model For Smart Grids Using Split Noise Cancellation

21 October 2021
Khadija Hafeez
Donna O'Shea
Thomas Newe
M. H. Rehmani
ArXiv (abs)PDFHTML
Abstract

High frequency reporting of energy consumption data in smart grids can be used to infer sensitive information regarding the consumers life style and poses serious security and privacy threats. Differential privacy (DP) based privacy models for smart grids ensure privacy when analysing energy consumption data for billing and load monitoring. However, DP models for smart grids are vulnerable to collusion attack where an adversary colludes with malicious smart meters and un-trusted aggregator in order to get private information from other smart meters. We propose an Enhanced Differential Private Noise Cancellation Model for Load Monitoring and Billing for Smart Meters (E-DPNCT) to protect the privacy of the smart grid data using a split noise cancellation protocol with multiple master smart meters (MSMs) to provide accurate billing and load monitoring and resistance against collusion attacks. We did extensive comparison of our E-DPNCT model with state of the art attack resistant privacy preserving models such as EPIC for collusion attack. We simulate our E-DPNCT model with real time data which shows significant improvement in privacy attack scenarios. Further, we analyze the impact of selecting different sensitivity parameters for calibrating DP noise over the privacy of customer electricity profile and accuracy of electricity data aggregation such as load monitoring and billing.

View on arXiv
Comments on this paper