ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.11342
14
0

ESOD:Edge-based Task Scheduling for Object Detection

20 October 2021
Yihao Wang
Ling Gao
J. Ren
Rui Cao
Hai Wang
Jie Zheng
Quanli Gao
ArXivPDFHTML
Abstract

Object Detection on the mobile system is a challenge in terms of everything. Nowadays, many object detection models have been designed, and most of them concentrate on precision. However, the computation burden of those models on mobile systems is unacceptable. Researchers have designed some lightweight networks for mobiles by sacrificing precision. We present a novel edge-based task scheduling framework for object detection (termed as ESOD). In detail, we train a DNN model (termed as pre-model) to predict which object detection model to use for the coming task and offloads to which edge servers by physical characteristics of the image task (e.g., brightness, saturation). The results show that ESOD can reduce latency and energy consumption by an average of 22.13% and 29.60% and improve the mAP to 45.8(with 0.9 mAP better), respectively, compared with the SOTA DETR model.

View on arXiv
Comments on this paper