ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.11855
17
40

Auctions Between Regret-Minimizing Agents

22 October 2021
Y. Kolumbus
N. Nisan
ArXivPDFHTML
Abstract

We analyze a scenario in which software agents implemented as regret-minimizing algorithms engage in a repeated auction on behalf of their users. We study first-price and second-price auctions, as well as their generalized versions (e.g., as those used for ad auctions). Using both theoretical analysis and simulations, we show that, surprisingly, in second-price auctions the players have incentives to misreport their true valuations to their own learning agents, while in the first-price auction it is a dominant strategy for all players to truthfully report their valuations to their agents.

View on arXiv
Comments on this paper