ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.12311
36
8

Vector Optimization with Stochastic Bandit Feedback

23 October 2021
Shiao Liu
Jian Huang
ArXivPDFHTML
Abstract

We introduce vector optimization problems with stochastic bandit feedback, in which preferences among designs are encoded by a polyhedral ordering cone CCC. Our setup generalizes the best arm identification problem to vector-valued rewards by extending the concept of Pareto set beyond multi-objective optimization. We characterize the sample complexity of (ϵ,δ\epsilon,\deltaϵ,δ)-PAC Pareto set identification by defining a new cone-dependent notion of complexity, called the ordering complexity. In particular, we provide gap-dependent and worst-case lower bounds on the sample complexity and show that, in the worst-case, the sample complexity scales with the square of ordering complexity. Furthermore, we investigate the sample complexity of the na\"ive elimination algorithm and prove that it nearly matches the worst-case sample complexity. Finally, we run experiments to verify our theoretical results and illustrate how CCC and sampling budget affect the Pareto set, the returned (ϵ,δ\epsilon,\deltaϵ,δ)-PAC Pareto set, and the success of identification.

View on arXiv
Comments on this paper