ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.12741
18
5

LAE : Long-tailed Age Estimation

25 October 2021
Zenghao Bao
Marc Rigter
Paul Duckworth
Jun Wan
Xibo Ma
Zhen Lei
G. Guo
    CVBM
ArXivPDFHTML
Abstract

Facial age estimation is an important yet very challenging problem in computer vision. To improve the performance of facial age estimation, we first formulate a simple standard baseline and build a much strong one by collecting the tricks in pre-training, data augmentation, model architecture, and so on. Compared with the standard baseline, the proposed one significantly decreases the estimation errors. Moreover, long-tailed recognition has been an important topic in facial age datasets, where the samples often lack on the elderly and children. To train a balanced age estimator, we propose a two-stage training method named Long-tailed Age Estimation (LAE), which decouples the learning procedure into representation learning and classification. The effectiveness of our approach has been demonstrated on the dataset provided by organizers of Guess The Age Contest 2021.

View on arXiv
Comments on this paper