ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.12786
32
0
v1v2 (latest)

Dictionary Learning Using Rank-One Atomic Decomposition (ROAD)

25 October 2021
Cheng Cheng
Wei Dai
ArXiv (abs)PDFHTML
Abstract

Dictionary learning aims at seeking a dictionary under which the training data can be sparsely represented. Methods in the literature typically formulate the dictionary learning problem as an optimization w.r.t. two variables, i.e., dictionary and sparse coefficients, and solve it by alternating between two stages: sparse coding and dictionary update. The key contribution of this work is a Rank-One Atomic Decomposition (ROAD) formulation where dictionary learning is cast as an optimization w.r.t. a single variable which is a set of rank one matrices. The resulting algorithm is hence single-stage. Compared with two-stage algorithms, ROAD minimizes the sparsity of the coefficients whilst keeping the data consistency constraint throughout the whole learning process. An alternating direction method of multipliers (ADMM) is derived to solve the optimization problem and the lower bound of the penalty parameter is computed to guarantees a global convergence despite non-convexity of the optimization formulation. From practical point of view, ROAD reduces the number of tuning parameters required in other benchmark algorithms. Numerical tests demonstrate that ROAD outperforms other benchmark algorithms for both synthetic data and real data, especially when the number of training samples is small.

View on arXiv
Comments on this paper