ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.12844
11
0

Reconstructing Pruned Filters using Cheap Spatial Transformations

25 October 2021
Roy Miles
K. Mikolajczyk
ArXivPDFHTML
Abstract

We present an efficient alternative to the convolutional layer using cheap spatial transformations. This construction exploits an inherent spatial redundancy of the learned convolutional filters to enable a much greater parameter efficiency, while maintaining the top-end accuracy of their dense counter-parts. Training these networks is modelled as a generalised pruning problem, whereby the pruned filters are replaced with cheap transformations from the set of non-pruned filters. We provide an efficient implementation of the proposed layer, followed by two natural extensions to avoid excessive feature compression and to improve the expressivity of the transformed features. We show that these networks can achieve comparable or improved performance to state-of-the-art pruning models across both the CIFAR-10 and ImageNet-1K datasets.

View on arXiv
Comments on this paper