ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.13523
6
2

Automating Control of Overestimation Bias for Reinforcement Learning

26 October 2021
Arsenii Kuznetsov
Alexander Grishin
Artem Tsypin
Arsenii Ashukha
Artur Kadurin
Dmitry Vetrov
    OffRL
ArXivPDFHTML
Abstract

Overestimation bias control techniques are used by the majority of high-performing off-policy reinforcement learning algorithms. However, most of these techniques rely on pre-defined bias correction policies that are either not flexible enough or require environment-specific tuning of hyperparameters. In this work, we present a general data-driven approach for the automatic selection of bias control hyperparameters. We demonstrate its effectiveness on three algorithms: Truncated Quantile Critics, Weighted Delayed DDPG, and Maxmin Q-learning. The proposed technique eliminates the need for an extensive hyperparameter search. We show that it leads to a significant reduction of the actual number of interactions while preserving the performance.

View on arXiv
Comments on this paper