ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.14000
11
39

Towards Hyperparameter-free Policy Selection for Offline Reinforcement Learning

26 October 2021
Siyuan Zhang
Nan Jiang
    OffRL
ArXivPDFHTML
Abstract

How to select between policies and value functions produced by different training algorithms in offline reinforcement learning (RL) -- which is crucial for hyperpa-rameter tuning -- is an important open question. Existing approaches based on off-policy evaluation (OPE) often require additional function approximation and hence hyperparameters, creating a chicken-and-egg situation. In this paper, we design hyperparameter-free algorithms for policy selection based on BVFT [XJ21], a recent theoretical advance in value-function selection, and demonstrate their effectiveness in discrete-action benchmarks such as Atari. To address performance degradation due to poor critics in continuous-action domains, we further combine BVFT with OPE to get the best of both worlds, and obtain a hyperparameter-tuning method for Q-function based OPE with theoretical guarantees as a side product.

View on arXiv
Comments on this paper