ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.14626
28
2
v1v2 (latest)

Scalable Bayesian Network Structure Learning with Splines

27 October 2021
Charupriya Sharma
P. V. Beek
ArXiv (abs)PDFHTML
Abstract

The graph structure of a Bayesian network (BN) can be learned from data using the well-known score-and-search approach. Previous work has shown that incorporating structured representations of the conditional probability distributions (CPDs) into the score-and-search approach can improve the accuracy of the learned graph. In this paper, we present a novel approach capable of learning the graph of a BN and simultaneously modelling linear and non-linear local probabilistic relationships between variables. We achieve this by a combination of feature selection to reduce the search space for local relationships and extending the score-and-search approach to incorporate modelling the CPDs over variables as Multivariate Adaptive Regression Splines (MARS). MARS are polynomial regression models represented as piecewise spline functions. We show on a set of discrete and continuous benchmark instances that our proposed approach can improve the accuracy of the learned graph while scaling to instances with a large number of variables.

View on arXiv
Comments on this paper