ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.15442
22
4

Scalable Unidirectional Pareto Optimality for Multi-Task Learning with Constraints

28 October 2021
Soumyajit Gupta
Gurpreet Singh
Raghu Bollapragada
Matthew Lease
ArXivPDFHTML
Abstract

Multi-objective optimization (MOO) problems require balancing competing objectives, often under constraints. The Pareto optimal solution set defines all possible optimal trade-offs over such objectives. In this work, we present a novel method for Pareto-front learning: inducing the full Pareto manifold at train-time so users can pick any desired optimal trade-off point at run-time. Our key insight is to exploit Fritz-John Conditions for a novel guided double gradient descent strategy. Evaluation on synthetic benchmark problems allows us to vary MOO problem difficulty in controlled fashion and measure accuracy vs. known analytic solutions. We further test scalability and generalization in learning optimal neural model parameterizations for Multi-Task Learning (MTL) on image classification. Results show consistent improvement in accuracy and efficiency over prior MTL methods as well as techniques from operations research.

View on arXiv
Comments on this paper