ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.01301
71
0
v1v2v3v4 (latest)

Asymptotic in a class of network models with an increasing sub-Gamma degree sequence

2 November 2021
Jing Luo
Haoyu Wei
Xiaoyu Lei
J. Guo
ArXiv (abs)PDFHTML
Abstract

For the differential privacy under the sub-Gamma noise, we derive the asymptotic properties of a class of network models with binary values with general link function. In this paper, we release the degree sequences of the binary networks under a general noisy mechanism with the discrete Laplace mechanism as a special case. We establish the asymptotic result including both consistency and asymptotically normality of the parameter estimator when the number of parameters goes to infinity in a class of network models. Simulations and a real data example are provided to illustrate asymptotic results.

View on arXiv
Comments on this paper