ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.01576
27
35

Provably efficient, succinct, and precise explanations

1 November 2021
Guy Blanc
Jane Lange
Li-Yang Tan
    FAtt
ArXivPDFHTML
Abstract

We consider the problem of explaining the predictions of an arbitrary blackbox model fff: given query access to fff and an instance xxx, output a small set of xxx's features that in conjunction essentially determines f(x)f(x)f(x). We design an efficient algorithm with provable guarantees on the succinctness and precision of the explanations that it returns. Prior algorithms were either efficient but lacked such guarantees, or achieved such guarantees but were inefficient. We obtain our algorithm via a connection to the problem of {\sl implicitly} learning decision trees. The implicit nature of this learning task allows for efficient algorithms even when the complexity of fff necessitates an intractably large surrogate decision tree. We solve the implicit learning problem by bringing together techniques from learning theory, local computation algorithms, and complexity theory. Our approach of "explaining by implicit learning" shares elements of two previously disparate methods for post-hoc explanations, global and local explanations, and we make the case that it enjoys advantages of both.

View on arXiv
Comments on this paper