ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.03705
13
0
v1v2 (latest)

Strong Recovery In Group Synchronization

5 November 2021
Bradley Stich
ArXiv (abs)PDFHTML
Abstract

The group synchronization problem is to estimate unknown group elements at the vertices of a graph when given a set of possibly noisy observations of group differences at the edges. We consider the group synchronization problem on finite graphs with size tending to infinity, and we focus on the question of whether the true edge differences can be exactly recovered from the observations (i.e., strong recovery). We prove two main results, one positive and one negative. In the positive direction, we prove that for a sequence of synchronization problems containing the complete digraph along with a relatively well behaved prior distribution and observation kernel, with high probability we can recover the correct edge labeling. Our negative result provides conditions on a sequence of sparse graphs under which it is impossible to recover the correct edge labeling with high probability.

View on arXiv
Comments on this paper