ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.04012
14
17

A-PixelHop: A Green, Robust and Explainable Fake-Image Detector

7 November 2021
Yao Zhu
Xinyu Wang
Hong-Shuo Chen
Ronald Salloum
C.-C. Jay Kuo
ArXivPDFHTML
Abstract

A novel method for detecting CNN-generated images, called Attentive PixelHop (or A-PixelHop), is proposed in this work. It has three advantages: 1) low computational complexity and a small model size, 2) high detection performance against a wide range of generative models, and 3) mathematical transparency. A-PixelHop is designed under the assumption that it is difficult to synthesize high-quality, high-frequency components in local regions. It contains four building modules: 1) selecting edge/texture blocks that contain significant high-frequency components, 2) applying multiple filter banks to them to obtain rich sets of spatial-spectral responses as features, 3) feeding features to multiple binary classifiers to obtain a set of soft decisions, 4) developing an effective ensemble scheme to fuse the soft decisions into the final decision. Experimental results show that A-PixelHop outperforms state-of-the-art methods in detecting CycleGAN-generated images. Furthermore, it can generalize well to unseen generative models and datasets.

View on arXiv
Comments on this paper