ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.04704
17
4

Data-driven Set-based Estimation of Polynomial Systems with Application to SIR Epidemics

8 November 2021
Amr Alanwar
Muhammad Umar B. Niazi
Karl H. Johansson
ArXivPDFHTML
Abstract

This paper proposes a data-driven set-based estimation algorithm for a class of nonlinear systems with polynomial nonlinearities. Using the system's input-output data, the proposed method computes a set that guarantees the inclusion of the system's state in real-time. Although the system is assumed to be a polynomial type, the exact polynomial functions, and their coefficients are assumed to be unknown. To this end, the estimator relies on offline and online phases. The offline phase utilizes past input-output data to estimate a set of possible coefficients of the polynomial system. Then, using this estimated set of coefficients and the side information about the system, the online phase provides a set estimate of the state. Finally, the proposed methodology is evaluated through its application on SIR (Susceptible, Infected, Recovered) epidemic model.

View on arXiv
Comments on this paper