ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.05764
6
0

A framework for comprehensible multi-modal detection of cyber threats

10 November 2021
J. Kohout
Cenek Skarda
Kyrylo Shcherbin
Martin Kopp
J. Brabec
ArXivPDFHTML
Abstract

Detection of malicious activities in corporate environments is a very complex task and much effort has been invested into research of its automation. However, vast majority of existing methods operate only in a narrow scope which limits them to capture only fragments of the evidence of malware's presence. Consequently, such approach is not aligned with the way how the cyber threats are studied and described by domain experts. In this work, we discuss these limitations and design a detection framework which combines observed events from different sources of data. Thanks to this, it provides full insight into the attack life cycle and enables detection of threats that require this coupling of observations from different telemetries to identify the full scope of the incident. We demonstrate applicability of the framework on a case study of a real malware infection observed in a corporate network.

View on arXiv
Comments on this paper