ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.06968
16
3

Hierarchical clustering by aggregating representatives in sub-minimum-spanning-trees

11 November 2021
Wenbo Xie
Ziqiang Liu
Jaideep Srivastava
ArXiv (abs)PDFHTML
Abstract

One of the main challenges for hierarchical clustering is how to appropriately identify the representative points in the lower level of the cluster tree, which are going to be utilized as the roots in the higher level of the cluster tree for further aggregation. However, conventional hierarchical clustering approaches have adopted some simple tricks to select the "representative" points which might not be as representative as enough. Thus, the constructed cluster tree is less attractive in terms of its poor robustness and weak reliability. Aiming at this issue, we propose a novel hierarchical clustering algorithm, in which, while building the clustering dendrogram, we can effectively detect the representative point based on scoring the reciprocal nearest data points in each sub-minimum-spanning-tree. Extensive experiments on UCI datasets show that the proposed algorithm is more accurate than other benchmarks. Meanwhile, under our analysis, the proposed algorithm has O(nlogn) time-complexity and O(logn) space-complexity, indicating that it has the scalability in handling massive data with less time and storage consumptions.

View on arXiv
Comments on this paper