ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.07758
18
0

Evolving Deep Neural Networks for Collaborative Filtering

15 November 2021
Yuhan Fang
Yuqiao Liu
Yanan Sun
ArXivPDFHTML
Abstract

Collaborative Filtering (CF) is widely used in recommender systems to model user-item interactions. With the great success of Deep Neural Networks (DNNs) in various fields, advanced works recently have proposed several DNN-based models for CF, which have been proven effective. However, the neural networks are all designed manually. As a consequence, it requires the designers to develop expertise in both CF and DNNs, which limits the application of deep learning methods in CF and the accuracy of recommended results. In this paper, we introduce the genetic algorithm into the process of designing DNNs. By means of genetic operations like crossover, mutation, and environmental selection strategy, the architectures and the connection weights initialization of the DNNs can be designed automatically. We conduct extensive experiments on two benchmark datasets. The results demonstrate the proposed algorithm outperforms several manually designed state-of-the-art neural networks.

View on arXiv
Comments on this paper