ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.07999
15
39

Adversarial Skill Chaining for Long-Horizon Robot Manipulation via Terminal State Regularization

15 November 2021
Youngwoon Lee
Joseph J. Lim
Anima Anandkumar
Yuke Zhu
    OffRL
ArXivPDFHTML
Abstract

Skill chaining is a promising approach for synthesizing complex behaviors by sequentially combining previously learned skills. Yet, a naive composition of skills fails when a policy encounters a starting state never seen during its training. For successful skill chaining, prior approaches attempt to widen the policy's starting state distribution. However, these approaches require larger state distributions to be covered as more policies are sequenced, and thus are limited to short skill sequences. In this paper, we propose to chain multiple policies without excessively large initial state distributions by regularizing the terminal state distributions in an adversarial learning framework. We evaluate our approach on two complex long-horizon manipulation tasks of furniture assembly. Our results have shown that our method establishes the first model-free reinforcement learning algorithm to solve these tasks; whereas prior skill chaining approaches fail. The code and videos are available at https://clvrai.com/skill-chaining

View on arXiv
Comments on this paper