ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.08500
6
12

Patent Data for Engineering Design: A Critical Review and Future Directions

15 November 2021
Shuo Jiang
Serhad Sarica
Binyang Song
Jie Hu
Jianxi Luo
    PINN
    AI4CE
ArXivPDFHTML
Abstract

Patent data have long been used for engineering design research because of its large and expanding size, and widely varying massive amount of design information contained in patents. Recent advances in artificial intelligence and data science present unprecedented opportunities to develop data-driven design methods and tools, as well as advance design science, using the patent database. Herein, we survey and categorize the patent-for-design literature based on its contributions to design theories, methods, tools, and strategies, as well as the types of patent data and data-driven methods used in respective studies. Our review highlights promising future research directions in patent data-driven design research and practice.

View on arXiv
Comments on this paper