ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.08785
9
13

Detecting AutoAttack Perturbations in the Frequency Domain

16 November 2021
P. Lorenz
P. Harder
Dominik Strassel
M. Keuper
J. Keuper
    AAML
ArXivPDFHTML
Abstract

Recently, adversarial attacks on image classification networks by the AutoAttack (Croce and Hein, 2020b) framework have drawn a lot of attention. While AutoAttack has shown a very high attack success rate, most defense approaches are focusing on network hardening and robustness enhancements, like adversarial training. This way, the currently best-reported method can withstand about 66% of adversarial examples on CIFAR10. In this paper, we investigate the spatial and frequency domain properties of AutoAttack and propose an alternative defense. Instead of hardening a network, we detect adversarial attacks during inference, rejecting manipulated inputs. Based on a rather simple and fast analysis in the frequency domain, we introduce two different detection algorithms. First, a black box detector that only operates on the input images and achieves a detection accuracy of 100% on the AutoAttack CIFAR10 benchmark and 99.3% on ImageNet, for epsilon = 8/255 in both cases. Second, a whitebox detector using an analysis of CNN feature maps, leading to a detection rate of also 100% and 98.7% on the same benchmarks.

View on arXiv
Comments on this paper